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American Superconductor - Tape Configurations

American Superconductor 344 - Copper-stabilized second
generation HTS wire

0.2mm *4.35 mm

70 A @77K (minimum)

American Superconductor S344 - Stainless steel-stabilized second
generation HTS wire

0.150 mm * 4.33 mm

60 A @77K (minimum)
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[ Other Configurations ]

« Major manufacturers are American Superconductor,
Sumitomo, EHTS, THEVA

 All have different configurations in terms of:
— Layer thickness
— Stabilization layer
— Current density

« Maximum length achieved is 322 m by Sumitomo

Cu
Cu
A
YBCO

A9 Buffer layers

YBCO
Buffer layers el

Ni alloy

typical configuration 1
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EHTS Tapes Available

I/EHTE YBCO Coated Tapes
YHT-HC YHT-HC YHT-HC
standard tape  tape with tape with high
for high current  optimized 2D-homogeneity
densities gquench behavior
architecture Substrate stainless steel, thickness 100 pm or 50 pm
HTS film YBCO, thickness 0.5 ... 3 um
protection layer silver or gold, thickness 0.2 um
Cu shunt layer 20pum thick - on request
electrical properties engineering current
' 300 ... 1000 A/mm?
@TTKOT deay
critical currents 135 Ain 4 mm wide tape

350 Ain 10 mm wide tape
1000 A in 40 mm wide tape

mechanical properties axial tensile strength 650 MPa
(critical values critical bending radius 9 mm
@ 300 K) critical torsion 30 ang. deg. per cm-length {(4mm
wide tape @ 40N axial force)
typical dimensions thickness 0.105 mm or 0.05 mm
width 4,10 or 40 mm
unit lengths 40 m @ 4mm wide tape
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[ The Problem ]

 Why is quench a problem in 2G wires?
— Normal zone propagation velocity too slow 1-10 mm/s
— Hot spot T could be very high and destructive
— Non uniformity of material properties
— Not yet well understood

o Stabilization and quench protection are VERY important

— Quench development appears to be a 3D phenomenon from
experiment (because it is so slow that turn to turn diffusion
matters)

— Need 3D simulation tool to analyze quench and develop
protection schemes
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[ Problem: quench propagation in 2G tapes ]

Normal zone

Buffer is highly resistive: how much current goes into Ni layer?
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[ Existing Models ]

e Chyu — Oberly — first study (1990)
e lwasa — 1D steady state

 Fu— 1D lumped circuit — no magnetic
coupling

 Ishiyama — 1D current sharing
e lwasa — copper stabilized
* \Vysotsky — scaling theory
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[ Existing Models (2) |

o Stadel — electrical field distribution due to hot spot
* No electrical breakdown to be expected

_—___________________|
.115E-10 53.187 106.374 139, 562
26.594 9.8l 132.09&8 177,291

ANIFFES 5H.7.1

YBCO (500nm)

LSMO (200nm)
= LBMO (40nm)

NiSat%W (80um)

Figure 1. Cut-Out of simulated allocation of the electrical field in the model. The dimension
of the electrical field is given in V/m.
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[ Existing Models (3) : 1-D PDE ]

oT %, oT
T ) —=2 il _
» One dimensional model

r » Temperature uniform
0 <l across the tape
p) | » Nickel and silver in parallel
=UE =1 (T) T<T, I>1, .
? {A A (1) T<Tei 1> » Simple formula for the
2 joule loss
(% IK T>T, JOHIE 10

» OR. C. Duckworth et al., “Quench dynamics in silver coated
YBCO tapes”, Proc. ICMC, Vol. 48, 2002
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[ Existing Models (4) : Electrical network ]

> Solder only considered \__Smﬁm el i et _1
for the transverse I(-D), o, Ii+1)

—————

resistance \ RD
> Silver and copper not in _m_}?:(,lg 10 g lx..(ﬁz)
parallel e BTN A 7 e
> Inductive effects izl iy
negligible

» Y. Fu, O. Tsukamoto, M. Furuse, “Copper stabilization of
YBCO coated conductor for quench protection”, IEEE Trans.
Appl. Supercond., 2003 -
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[ Existing Models (5) : Universal scaling ]

» Uniform temperature
along the tape

1> 1 =l

> Power law for the
superconductor

> Based on equilibrium
theory

Heat release, @ , and cooling power, w

» Analytical solution -
relative to the tape K ’T Tt N T,
heating .

» A. L. Rakhmanov, V. S. Vysotsky, Y.A. llyin, T. Kiss, M.
Takeo, “Universal scaling law for quench development in
HTSC tapes”, Cryogenics 40, 200&5 |
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[ Existing Models (6) : Lumped Parameters Assumptions ]

» Lumped electrical parameters model coupled with a
discrete (electrical equivalent) thermal model

» Tape uniform along the length

» Tape divided into N, layers and N, sectors along the
length

> Each layer sector has different thermal and
electromagnetic properties

» Electrical coupling through electrical contact resistances
and mutual induction coefficients

» Thermal coupling through thermal contact resistances

» Joule losses and temperature dependent properties link
the two models

[ CHATS AS 2006, BERKELEY, CA, SEPT. 5-7 ]



[ Existing Models (6) : Lumped Parameters Model ]

N-layer tape: lumped parameters electrical

circuit mOdel Inductive
coupling
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I:QJ-Cu RJ-Cu
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Models Comparison with Experiments
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[ Conclusion on Models

» Presented models have been validated on dedicated

experiments

« Current models cannot predict quench or recovery

« Tape is considered equipotential which is not the case

In reality

 Models are limited to single tape
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2o | < 601
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[ —a—TC-2 40 -
200 b, —e—TC-3 = xp-§.5 cm
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 Need to do better. te)
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Typical Tape Configuration

Tape length  (cm) 14
Cu Tape width  (cm) 1
d_cu (um) 50
d ag m 3
Ag _ (nm)
d_YBCO (um) 1
YBCO _
Buffer layers d_Ni (um) 75
Ni alloy Ic (77 K) (A) 146
n (77 K) 21
Material Cp (/M K) | K (W/K) p (kg/m®) /o c (Q.m)
30 K | Copper 65 1.5 e+6 8960 1 7.8e-9
Silver 80 0.7 e+6 10490 1 7.55e-9
Ni 30 0.4 e+6 8880 1240 2.5 e-8
Material Cp (I/M°K) | K (W/K) p (kg/m®) /g o (Q.m)
[ [ K | Copper 230 0.6 e+6 8960 1 8.6 e-9
Silver 170 0.45 e+6 10490 1 8.31e-9
Ni 150 0.2 e+6 8880 1240 2.8 e-8
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[ Diffusivity and Time Constants ]

 If homogeneous material considered for each layer

— Thermal:
a_m_z—:L — |__2:,0CpL2
LS _ IOCp a K

— Magnetic:
K=2 > L_Z _ L*

M K o

« How do they compare?
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Effect of Current diffusion

Diffusion time constants

Material Thermal Electromagnetic | Thermal time Electromagnetic
diffusivity diffusivity constant time constant
Copper 2.58 6.21 e-3 9.71 E-10 4.03 E-7
30 K [ silver 0.834 6.01e-3 1.08 E-11 1.5E-9
Nickel 15 1.6 E-5 3.75 E-9 3.51E-4
Material Thermal Electromagnetic | Thermal time Electromagnetic
77 K diffusivity diffusivity constant time constant
Copper 0.291 6.84 E-3 8.59 E-9 3.65 E-7
Silver 0.252 6.61 E-3 3.57 E-11 1.36 E-9
Nickel 0.15 1.8 E-5 3.75E-8 3.13E-4

Time constants almost independent from temperature

Normal zone propagates at a few mm/s
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[ NZP Velocity ]

300

250 1-
20.0 -

Normal zone propagation velocity {(mm/s)

{].ﬂ I 1 1 1 1
A0 40 50 60 0 B0 L
Transport current { %1}

 Normal zone velocity in the same order of magnitude as
current diffusion in Nickel layer !
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[ Effect of Current diffusion (3) ]

* If model is 2D and tape considered infinite, how does
current go into the Ni layer?

Current diffused in Ni layer much slower than in copper

 Current diffusion in Nickel has to be taken into account

« At beginning of guench, current can not develop in Ni
and dissipates more losses than expected
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[ Proposed Model for FEA Simulations

 FEA simulation
— YBCO layer considered as a boundary condition

— YBCO layer considered to have infinite resistance when T
Increases

— Current diffusion in Ag and Cu neglected
— Current diffusion in Nickel taken into account
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Preliminary Qualitative Results

0.1

« EXxperiments show that current transfers on longer
lengths into substrate

« This can only be explained by diffusion
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* Typical sampling time in
experiment around 1 ms
* Snapshot at t=1ms
shows that current
redistribution has already
happened

« What happens before?
 What is driving the
gquench?




[ Edge Effects in Quench Development ]

« Layers may be in contact on the side

Current is forced in to Cu and Ni layers
Current cannot diffuse fast into Ni
More heat generated in copper while current goes “slowly” in buffer

Problem is not 2d but 3d (even for single tape)
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From Tape to Device ]

Quench in a coll will be different than in an isolated tape
sample:

— Magnetic coupling between winding layers

— Heat transfer from one layer to another

e Quench simulation in colls is requwed to deveIOp
protection systems - = .

Quench propagates in 3D by heat transfer and magnetic coupling between layers
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[ Key Parameters ]

Thermal and electrical characteristics of each of the
materials forming layers

Electrical contact resistance between layers
Thermal contact resistance between layers
Thermal and electrical diffusivity vs. temperature

e This implies to develop model with the help of
experimental data

[ CHATS AS 2006, BERKELEY, CA, SEPT. 5-7 ]



[ Promising Techniques to Speed Up Quench Propagation ]

contact I contact 2 1 contact 3 \ contact 4

| substrate
F{bﬂ-tl{}m view)

A supergunducmr
) v (top view)
current lines

(Quench

* Implement contacts to force current to go into substrate

 Current density is increased at contacts thus generating
more heating

Switching and quench propagation in coated conductors for fault current limiters,
W. Prusseita, H. Kindera, J. Handkea, M. Noeb, A. Kudymowb, W. Goldackerb,
Presented at ISS 2005, Tsukuba, Japan, 24.-26.10.2005
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Conclusion and Future Work ]

LTS protection techniques do not work. Need 3D model
to develop transition protection

Current diffusion in the substrate may have an important
role in quench dynamics

Contacts on side between layers have to be taken into
account and require a 3D model

Model development needs to be closely linked to
experimental testing

Tape model cannot be applied to quench propagation in
devices. 3D approach is required to simulate interaction
between layers

CHATS AS 2006, BERKELEY, CA, SEPT. 5-7 ]



	CHATS AS 2006 – Berkley, CA
	Outline
	American Superconductor - Tape Configurations
	Other Configurations
	EHTS Tapes Available
	The Problem
	Problem: quench propagation in 2G tapes
	Existing Models
	Existing Models (2)
	Models Comparison with Experiments
	Conclusion on Models
	Typical Tape Configuration
	Diffusivity and Time Constants
	Effect of Current diffusion
	NZP Velocity
	Effect of Current diffusion (3)
	Proposed Model for FEA Simulations
	Preliminary Qualitative Results
	Edge Effects in Quench Development
	From Tape to Device
	Key Parameters
	Promising Techniques to Speed Up Quench Propagation
	Conclusion and Future Work

