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• Tape configurations and physical properties 
• Problem statement
• Quench process in YBCO 2G conductors
• Existing models in the literature and their 

limitations
• Effect of current diffusion on quench dynamic
• From tape to device quench modelling
• Key parameters
• Proposed improved model
• Preliminary qualitative results and future work
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American Superconductor - Tape ConfigurationsAmerican Superconductor American Superconductor -- Tape ConfigurationsTape Configurations

• Multi-layer configuration
• Physical properties strongly dependant on temperature

American Superconductor 344 - Copper-stabilized second
generation HTS wire
0.2 mm * 4.35 mm
70 A @77K (minimum)

American Superconductor S344 - Stainless steel-stabilized second
generation HTS wire
0.150 mm * 4.33 mm
60 A @77K (minimum)
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Other ConfigurationsOther ConfigurationsOther Configurations

• Major manufacturers are American Superconductor, 
Sumitomo, EHTS, THEVA

• All have different configurations in terms of:
– Layer thickness
– Stabilization layer
– Current density

• Maximum length achieved is 322 m by Sumitomo

typical configuration 1 Typical configuration  2
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EHTS Tapes AvailableEHTS Tapes AvailableEHTS Tapes Available
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The ProblemThe ProblemThe Problem

• Why is quench a problem in 2G wires?
– Normal zone propagation velocity too slow 1-10 mm/s
– Hot spot T could be very high and destructive
– Non uniformity of material properties
– Not yet well understood

• Stabilization and quench protection are VERY important
– Quench development appears to be a 3D phenomenon from 

experiment (because it is so slow that turn to turn diffusion 
matters)

– Need 3D simulation tool to analyze quench and develop 
protection schemes
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Problem: quench propagation in 2G tapesProblem: quench propagation in 2G tapesProblem: quench propagation in 2G tapes

Normal zone

Buffer is highly resistive: how much current goes into Ni layer?
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Existing ModelsExisting ModelsExisting Models

• Chyu – Oberly – first study (1990)
• Iwasa – 1D steady state
• Fu – 1D lumped circuit – no magnetic 

coupling
• Ishiyama – 1D current sharing
• Iwasa – copper stabilized
• Vysotsky – scaling theory
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Existing Models (2)Existing Models (2)Existing Models (2)

• Stadel – electrical field distribution due to hot spot
• No electrical breakdown to be expected
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One dimensional model
Temperature uniform 
across the tape
Nickel and silver in parallel
Simple formula for the 
joule loss
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OR. C. Duckworth et al., “Quench dynamics in silver coated 
YBCO tapes”, Proc. ICMC, Vol. 48, 2002

Existing Models (3) : 1-D PDEExisting Models (3) : 1Existing Models (3) : 1--D PDED PDE
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Solder only considered 
for the transverse 
resistance
Silver and copper not in 
parallel

Inductive effects 
negligible

Y. Fu, O. Tsukamoto, M. Furuse, “Copper stabilization of 
YBCO coated conductor for quench protection”, IEEE Trans. 
Appl. Supercond., 2003

Existing Models (4) : Electrical networkExisting Models (4) : Electrical networkExisting Models (4) : Electrical network
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Uniform temperature 
along the tape
Power law for the 
superconductor
Based on equilibrium 
theory
Analytical solution 
relative to the tape 
heating

A. L. Rakhmanov, V. S. Vysotsky, Y.A. Ilyin, T. Kiss, M. 
Takeo, “Universal scaling law for quench development in 
HTSC tapes”, Cryogenics 40, 2000

Existing Models (5) : Universal scalingExisting Models (5) : Universal scalingExisting Models (5) : Universal scaling
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Lumped electrical parameters model coupled with a 
discrete (electrical equivalent) thermal model
Tape uniform along the length
Tape divided into NL layers and Ns sectors along the 
length
Each layer sector has different thermal and 
electromagnetic properties
Electrical coupling through electrical contact resistances 
and mutual induction coefficients 
Thermal coupling through thermal contact resistances
Joule losses and temperature dependent properties link 
the two models

Existing Models (6) : Lumped Parameters AssumptionsExisting Models (6) : Lumped Parameters AssumptionsExisting Models (6) : Lumped Parameters Assumptions
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N-layer tape: lumped parameters electrical 
circuit model 
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Existing Models (6) : Lumped Parameters ModelExisting Models (6) : Lumped Parameters ModelExisting Models (6) : Lumped Parameters Model
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Models Comparison with ExperimentsModels Comparison with ExperimentsModels Comparison with Experiments

• Temperature simulations are 
accurate

• Large discrepancies for voltage

Iwasa et Al.

Ishiyama, et Al.
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Conclusion on ModelsConclusion on ModelsConclusion on Models

• Presented models have been validated on dedicated 
experiments

• Current models cannot predict quench or recovery
• Tape is considered equipotential which is not the case 

in reality
• Models are limited to single tape

• Need to do better.
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Typical Tape ConfigurationTypical Tape ConfigurationTypical Tape Configuration

  

Cu 

Ni alloy 

Buffer layers 
YBCO 

Ag 

Tape length (cm) 14 

Tape width (cm) 1 

d_cu (μm) 50 

d_ag (μm) 3 

d_YBCO (μm) 1 

d_Ni (μm) 75 

Ic (77 K) (A) 146 

n (77 K)  21 

Material Cp (J/m3.K) K (W/K) ρ (kg/m3) μ/μ0 σ (Ω.m) 
Copper 65 1.5 e+6 8960 1 7.8 e-9 
Silver 80 0.7 e+6 10490 1 7.55 e-9 
Ni 30 0.4 e+6 8880 1240 2.5 e-8 
 
Material Cp (J/m3.K) K (W/K) ρ (kg/m3) μ/μ0 σ (Ω.m) 
Copper 230 0.6 e+6 8960 1 8.6 e-9 
Silver 170 0.45 e+6 10490 1 8.31 e-9 
Ni 150 0.2 e+6 8880 1240 2.8 e-8 
 

30 K

77 K
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Diffusivity and Time ConstantsDiffusivity and Time ConstantsDiffusivity and Time Constants

• If homogeneous material considered for each layer
– Thermal:

– Magnetic:

• How do they compare?
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Effect of Current diffusionEffect of Current diffusionEffect of Current diffusion

• Diffusion time constants

Material Thermal 
diffusivity 

Electromagnetic 
diffusivity 

Thermal time 
constant 

Electromagnetic 
time constant 

Copper 2.58 6.21 e-3 9.71 E-10 4.03 E-7 
Silver 0.834 6.01 e-3 1.08 E-11 1.5 E-9 
Nickel 1.5 1.6 E-5 3.75 E-9 3.51 E-4 
 

30 K

77 K
Material Thermal 

diffusivity 
Electromagnetic 
diffusivity 

Thermal time 
constant 

Electromagnetic 
time constant 

Copper 0.291 6.84 E-3 8.59 E-9 3.65 E-7 
Silver 0.252 6.61 E-3 3.57 E-11 1.36 E-9 
Nickel 0.15 1.8 E-5 3.75 E-8 3.13 E-4 
 

Normal zone propagates at a few mm/s

Diffusion occurs in Ni layer and has to be taken into account

Time constants almost independent from temperature
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NZP VelocityNZP VelocityNZP Velocity

• Normal zone velocity in the same order of magnitude as 
current diffusion in Nickel layer !

NHMFL
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Effect of Current diffusion (3)Effect of Current diffusion (3)Effect of Current diffusion (3)

• If model is 2D and tape considered infinite, how does 
current go into the Ni layer?

• Current diffusion in Nickel has to be taken into account
• At beginning of quench, current can not develop in Ni 

and dissipates more losses than expected

Cu
YBCO

Ni

Current diffused in Ni layer much slower than in copper
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Proposed Model for FEA SimulationsProposed Model for FEA SimulationsProposed Model for FEA Simulations

• FEA simulation
– YBCO layer considered as a boundary condition
– YBCO layer considered to have infinite resistance when T 

increases
– Current diffusion in Ag and Cu neglected
– Current diffusion in Nickel taken into account

x

z
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Preliminary Qualitative ResultsPreliminary Qualitative ResultsPreliminary Qualitative Results

• Experiments show that current transfers on longer 
lengths into substrate

• This can only be explained by diffusion

• Typical sampling time in 
experiment around 1 ms
• Snapshot  at t=1ms 
shows that current 
redistribution has already 
happened
• What happens before?
• What is driving the 
quench?
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Edge Effects in Quench DevelopmentEdge Effects in Quench DevelopmentEdge Effects in Quench Development

• Layers may be in contact on the side

Problem is not 2d but 3d (even for single tape)

Current is forced in to Cu and Ni layers
Current cannot diffuse fast into Ni
More heat generated in copper while current goes “slowly” in buffer



CHATS AS 2006, BERKELEY, CA, SEPT. 5CHATS AS 2006, BERKELEY, CA, SEPT. 5--77

From Tape to DeviceFrom Tape to DeviceFrom Tape to Device

• Quench in a coil will be different than in an isolated tape 
sample:
– Magnetic coupling between winding layers
– Heat transfer from one layer to another

• Quench simulation in coils is required to develop 
protection systems

Quench propagates in 3D by heat transfer and magnetic coupling between layers
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Key ParametersKey ParametersKey Parameters

• Thermal and electrical characteristics of each of the 
materials forming layers

• Electrical contact resistance between layers
• Thermal contact resistance between layers
• Thermal and electrical diffusivity vs. temperature

• This implies to develop model with the help of 
experimental data

21 3 40

Ni 21 3 40

Cu
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Promising Techniques to Speed Up Quench PropagationPromising Techniques to Speed Up Quench PropagationPromising Techniques to Speed Up Quench Propagation

• Implement contacts to force current to go into substrate
• Current density is increased at contacts thus generating 

more heating

Switching and quench propagation in coated conductors for fault current limiters, 
W. Prusseita, H. Kindera, J. Handkea, M. Noeb, A. Kudymowb, W. Goldackerb, 
Presented at ISS 2005,Tsukuba, Japan, 24.-26.10.2005 
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Conclusion and Future WorkConclusion and Future WorkConclusion and Future Work

• LTS protection techniques do not work. Need 3D model 
to develop transition protection

• Current diffusion in the substrate may have an important 
role in quench dynamics

• Contacts on side between layers have to be taken into 
account and require a 3D model

• Model development needs to be closely linked to 
experimental testing

• Tape model cannot be applied to quench propagation in 
devices. 3D approach is required to simulate interaction 
between layers
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