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Motivation

• New Air Force applications require high power 
density systems

• Second generation HTS conductors can provide 
desired power density, but size of cooling system 
has to decrease

• Operation at temperatures near 77K would lead to 
manageable cooling systems

• Reliability of the magnets is paramount



Simulation of Quench Propagation in Coated Conducto rs

The Problem

• Currently effective quench detection is not possible

• Very slow NZPV in YBCO coated tape due to heat capacity

• Physics not yet  well-understood

• The role of electrical and thermal contact resistances between layers 
may play a role in quench propagation
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Previous model of HTS coil
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Previous homogenized model was neglecting inter-layer 
contact resistances
Need to develop higher fidelity model at tape level
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Coupled Model– Electrical Equations

Nickel

YBCO
Copper 

Normal Zone Silver Layer– Contact Resistance  B.C.

Buffer Layer-- Contact Resistance  B.C.

Ground

Electrical Insulation

Electrical Insulation

Inflow Current
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In Subdomains:

(Interior) Contact Resistance Boundary Conditions:

d
V

nJ
D

=×
s��

n
c

n

n

c

E

E
TJTE

1

1

)(),(

-

=s

,
( )

0 .

c
co c

c c o

c

T T
J if T T

J T T T

if T T

b� � �-
� <� �= -	 � �
�

³


Silver and Buffer Layers are not 
meshed!

d is the thickness of the thin resistive layer
VD is the voltage difference across the thin layer

VD

No fields => Not included
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Coupled Model– Thermal Equations

Nickel

YBCO
Copper 

Normal Zone Silver Layer– Thin Thermal Resistance  B.C.

Buffer Layer- Thin Thermal Resistance  B.C.

Thermal Insulation
0K T n q n- Ñ × º × =
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In Subdomains:

(Interior) Thin Thermal Resistance Boundary Conditi ons:
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Silver and Buffer Layers are not 
meshed!

d is the thickness of the thin resistive layer
TD is the temperature difference across the thin layer

T = 77K
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Quench is initiated by joule heating of transport 
current bypassing the fixed normal zone
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Coupled Model- Key Points

• Real dimensions of conductor-- no scaling, high fidelity

• All layers are accounted for-- high fidelity

• Reductions in meshing
– No meshing for thin electrical and thermal resistive layers-- thin resistive 

layers are modeled analytically as boundary faces

– Independent non-conformal meshes between layer

– Anti-symmetric, half-length model-- grounded at current outflow end

• Large current density       to speed up joule heating,

with                       -- phenomenological investigation

• Stiff problem-- solve sequentially back and forth between two physics 
solvers in small enough time steps

eJ
/ 0.9e cJ J =
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Inter-Layer Current Sharing

Normalized Current Density Vector View

Proportional Current Density Vector View

Temperature Distribution at  t = 0.5ms

Non uniform current distribution!
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Voltage Distribution

Normal Zone

Voltage distribution in copper layer different from that of Nickel layer.
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Current Density Distribution

Sigma_Silver = 1E8, Sigma_Buffer = 1E6
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Current Sharing Length Vs. Conductivity

Criterion:
5R RCS Length X X= -

5RX
RX is a fixed location on tape surface wherethe reference            is taken

Sigma_Buffer = 1E3 S/m

refJ
is the location on tape surfacewhere 5 refJ J=

Sigma_Silver = 1E8 S/m

Current Sharing Length at Nickel Layer
Vs.

Electrical Conductivity of Buffer Layer
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Electrical Conductivity of Buffer Layer (S/m)
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Current Sharing Length at Copper Layer
Vs.

Electrical Conductivity of Silver Layer
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Electrical Conductivity of Silver Layer (S/m)
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NZPV & Temperature Vs. Conductivity
Relative NZPV & Temperature Vs.

Electrical Conductivity of Silver Layer
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Electrical Conductivity of Silver Layer (S/m)
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Sigma_Buffer = 1E3 S/m; K_Silver & K_Buffer = Inf (Continuity); J = 
1.8E11 A/m^2, J/Jc = 0.9.

Sigma_Silver = 1E8 S/m, Sigma_Buffer = 1E3 S/m; 
K_Buffer = Inf; J = 1.8E11 A/m^2, J/Jc = 0.9.

* Measured at outflow end
Electrical Conductivity (S/m)  J at Silver Layer (A/m)*  J at Nickel Layer (A/m)*  

Sigma_Silver=1E6, 
Sigma_Buffer=1E3 

830.64 (83.06 %) 169.36 (16.94 %) 

Sigma_Silver=1E8, 
Sigma_Buffer=1E3 

842.75 (84.28 %) 157.25 (15.72 %) 

 

Relative NZPV & Temperature Vs.
Thermal Conductivity of Silver Layer
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Thermal Conductivity of Silver Layer (W/(m.K))
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Conclusion and Future Work

• Conclusion
– Better understanding of the physics of current redistribution and 

heat propagation during quench

• Ongoing and Future Work
– Validate simulation results by experimental data created by 

group

– 3D high-fidelity coated conductor modeling-- edge effects and 
conductors with surrounded stabilizer

– 3D Multi-Layer Magneto-Thermal model-- characterization of 
parameters and quench behaviors for homogenized coil model 

– Apply realistic current sharing model to quench propagation in 
coils

– Investigate passive and active quench protection schemes

– 3D Quench COMSOL code
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Thermal & Electrical Properties of Layers
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Voltage Distribution on Full Length Model

• Electric potential, current density, etc. are antisymmetric on axis of 
symmetry-- validates grounding of the current outflow end of the half-
length tape model 
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Quench propagation in 2G tapes

Normal zone

How current redistribute during quench?
Buffer layer is highly resistive.


